Power Analysis and Sample Size Determination in Metabolic Phenotyping.
نویسندگان
چکیده
Estimation of statistical power and sample size is a key aspect of experimental design. However, in metabolic phenotyping, there is currently no accepted approach for these tasks, in large part due to the unknown nature of the expected effect. In such hypothesis free science, neither the number or class of important analytes nor the effect size are known a priori. We introduce a new approach, based on multivariate simulation, which deals effectively with the highly correlated structure and high-dimensionality of metabolic phenotyping data. First, a large data set is simulated based on the characteristics of a pilot study investigating a given biomedical issue. An effect of a given size, corresponding either to a discrete (classification) or continuous (regression) outcome is then added. Different sample sizes are modeled by randomly selecting data sets of various sizes from the simulated data. We investigate different methods for effect detection, including univariate and multivariate techniques. Our framework allows us to investigate the complex relationship between sample size, power, and effect size for real multivariate data sets. For instance, we demonstrate for an example pilot data set that certain features achieve a power of 0.8 for a sample size of 20 samples or that a cross-validated predictivity QY(2) of 0.8 is reached with an effect size of 0.2 and 200 samples. We exemplify the approach for both nuclear magnetic resonance and liquid chromatography-mass spectrometry data from humans and the model organism C. elegans.
منابع مشابه
Sample size calculation in metabolic phenotyping studies
The number of samples needed to identify significant effects is a key question in biomedical studies, with consequences on experimental designs, costs and potential discoveries. In metabolic phenotyping studies, sample size determination remains a complex step. This is due particularly to the multiple hypothesis-testing framework and the top-down hypothesis-free approach, with no a priori known...
متن کاملSelective phenotyping for increased efficiency in genetic mapping studies.
The power of a genetic mapping study depends on the heritability of the trait, the number of individuals included in the analysis, and the genetic dissimilarity among them. In experiments that involve microarrays or other complex physiological assays, phenotyping can be expensive and time-consuming and may impose limits on the sample size. A random selection of individuals may not provide suffi...
متن کاملBayesian Sample size Determination for Longitudinal Studies with Continuous Response using Marginal Models
Introduction Longitudinal study designs are common in a lot of scientific researches, especially in medical, social and economic sciences. The reason is that longitudinal studies allow researchers to measure changes of each individual over time and often have higher statistical power than cross-sectional studies. Choosing an appropriate sample size is a crucial step in a successful study. A st...
متن کاملBayesian Determination of Sample Size in Longitudinal Studies with Binary Responses Using Random Effects Models
Sample size determination is important in all statistical studies including longitudinal studies. This is usually done by considering a target power to reduce the costs of sampling. Choosing the right sample size using efficient methods, ensures that the researcher achieve goal of the study, by spending the least amount of energy, time and money. In this article, using a method based on simulat...
متن کاملDetermination of the Size of a Trial, Using Lindley’s Method
Extended Abstract. When a new treatment is being considered, trials are carried out to estimate the increase in performance which is likely to result if the new treatment were to replace the treatment in current use. Many authors have looked at this problem and many procedures have been introduced to solve it. An important feature of the analysis in this work is that account is taken of the fac...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Analytical chemistry
دوره 88 10 شماره
صفحات -
تاریخ انتشار 2016